Publications

A full list of publications are available to view and download on Research Explorer:

SELECTED PUBLICATIONS

Select a topic

 

Aerodynamics (fundamentals)

Souppez, J-BRG & Viola, IM, 2022, ‘High-blockage corrections for circular arcs at transitional Reynolds numbers,’ Journal of Wind Engineering & Industrial Aerodynamics, vol. 229, no. 105139. https://doi.org/10.1016/j.jweia.2022.105139.

Souppez, JB, Bot, P & Viola, IM, 2022 ‘Turbulent Flow Around Circular Arcs’, Physics of Fluids, vol. 34, no. 1. https://doi.org/10.1063/5.0075875

Viola, IM, Arredondo-Galeana, A & Pisetta, G, 2021, ‘The Force Generation Mechanism of Lifting Surfaces with Flow Separation’, Ocean Engineering, vol. 239, 109749. https://doi.org/10.1016/j.oceaneng.2021.109749

Bird, H, Ramesh, KK, Ōtomo, S, & Viola, IM, 2021, ‘Usefulness of inviscid linear unsteady lifting-line theory for viscous large-amplitude problems’, AIAA Journal, pp. 12. https://arc.aiaa.org/doi/10.2514/1.J060808

Arredondo-Galeana, A, Young, AM, Smyth, ASM & Viola, IM, 2021, ‘Unsteady load mitigation through a passive trailing-edge flap,’ Journal of Fluids and Structures, vol. 106, no. 103352. https://doi.org/10.1016/j.jfluidstructs.2021.103352

Smith, AJ, Pisetta, G & Viola IM, 2021, ‘The Scales of the Leading-Edge Separation Bubble,’ Physics of Fluids, vol. 33, no. 4, 045101.  https://doi.org/10.1063/5.0045204

Ōtomo, S, Mulleners, K, Ramesh, K & Viola, IM, 2021. ‘Unsteady lift on a high-amplitude pitching aerofoil’, Experiments in Fluids, vol. 62, no. 6, pp. 18. https://doi.org/10.1007/s00348-020-03095-2

Viola, IM, Chapin, VG, Speranza, N & Biancolini, M, 2018, ‘Optimal airfoil’s shapes by high fidelity CFD’, Aircraft Engineering and Aerospace Technology, vol 90, no. 6, pp. 1000-1011. https://doi.org/10.1108/AEAT-09-2017-0210

Cummins, C, Viola, IM, Mastropaolo E, and Nakayama, N, 2017, ‘The effect of permeability on the flow past permeable disks at low Reynolds numbers’, Physics of Fluids, vol 29, pp. 097103. https://doi.org/10.1063/1.5001342

 

Biomechanics

Seale, M, Zhdanov, O, Soon, MB, Cummins, C, Kroll, E, Blatt, MR, Zre-Bethtash, H, Busse, A, Mastropaolo, E, Bullock, JM, Viola, IM, Nakayama, N, ‘Environmental morphing enables informed dispersal of the dandelion diaspore,’ eLife, 11:e81962. https://doi.org/10.7554/eLife.81962

Seale, M, Kiss, A, Bovio, S, Viola, IM, Mastropaolo, E, Boudaoud A & Nakayama, N ‘Dandelion pappus morphing is actuated by radially patterned material swelling,’ Nature Communications, vol. 13, no. 2498, pp. 14. https://doi.org/10.1038/s41467-022-30245-3

Certini, D, Fazan, L, Nakayama, N, Viola, IM & Kozlowski. G, 2020, ‘Velocity of the falling dispersal units in Zelkova abelicea: remarkable evolutionary conservation within the relict tree genus,’ American Journal of Botany, vol. 107, no. 12, pp. 1-8. https://doi.org/10.1002/ajb2.1581

Cummins, C, Saele, M, Macence, A, Certini, D, Matropaolo, E, Viola, IM & Nakayama, N, 2018, ‘A separated vortex ring underlies the flight of the dandelion’, Nature, vol 562, pp. 414–418. https://doi.org/10.1038/s41586-018-0604-2

Seale, M, Cummins, C, Viola, IM, Mastropaolo, E & Nakayama, N, 2018, ‘Design principles of hair-like structures as biological machines’, Journal of the Royal Society Interface, vol 15, no. 142, 20180206. http://dx.doi.org/10.1098/rsif.2018.0206

Muir, R, Arredondo-Galeana, A & Viola, IM, 2017, ‘The leading-edge vortex of swift-wing shaped delta wings’, Royal Society Open Science, vol 4, no 8, pp. 170077. https://doi.org/10.1098/rsos.170077

 

Turbulence (compliant walls)

Jozsa, TI, Balaras, E, Kashtalyan, M, Borthwick, AGL & Viola, IM, 2020, ‘On the friction drag reduction mechanism of streamwise wall fluctuations’, International Journal of Heat and Fluid Flow, vol. 86, 108686. https://doi.org/10.1016/j.ijheatfluidflow.2020.108686

Jozsa, TI, Balaras, E, Kashtalyan, M, Borthwick, AGL & Viola, IM, 2019, ‘Active and passive in-plane wall fluctuations in turbulent channel flows’, Journal of Fluid Mechanics, vol. 866, pp. 689-720. https://doi.org/10.1017/jfm.2019.145

 

COVID Aerodynamics

Goodwin, L, Hayward, T, Krishan, P, Nolan, G, Nundy, M, Ostrishko, K, Attili, A, Barranco Cárceles, S, Epelle, EI, Gabl, R, Pappa, E, Stajuda, M, Zen, S, Dozier, M, Anderson, N, Viola, IM & McQuillan, R, 2021, ‘Which factors influence the extent of indoor transmission of SARS-COV-2? A rapid evidence review’, Journal of Global Health, vol. 11, no. 10002. https://doi.org/10.7189/jogh.11.10002

Viola, IM, Peterson, B, Pisetta, G, Pavar, G, Akhtar, H, Menolascina, F, Mangano, E, Dunn, K, Gabl, R, Nila, A, Molinari, E, Cummins, C, Thompson, G, Lo M, Denison, F, Digard, P, Malik, O, Dunn, MJG & Mehendale, F, 2021, ‘Face Coverings, Aerosol Dispersion and Mitigation of Virus Transmission Risk’, IEEE Open Journal of Engineering in Medicine and Biologyhttps://doi.org/10.1109/OJEMB.2021.3053215

Cummins, C, Ajayi, OJ, Mehendale, FV, Gabl, R & Viola, IM, 2020, ‘The dispersion of spherical droplets in source-sink flow and their relevance to the COVID-19 pandemic’, Physics of Fluids, vol. 32, no. 8, 08330201-08330213. https://doi.org/10.1063/5.0021427. Paper published as part of the special topic on Flow and the Virus. Selected as Featured Article

Bandiera L, Pavar G, Pisetta G, Ōtomo S, Mangano E, Seckl JR, Digar, P, Molinari, E, Menolascina, F & Viola, IM, 2020. ‘Face Coverings and Respiratory Tract Droplet Dispersion’, Royal Society Open Science, vol. 7, pp. 201663. https://doi.org/10.1098/rsos.201663

 

Wind and Tidal Energy

Gambuzza, S, Pisetta, G, Davey, T, Steynor, J & Viola, IM, 2023, ‘Model-scale experiments of passive pitch control for tidal turbines,’ Renewable Energy, vol. 205, March 2023, pp. 10-29. https://doi.org/10.1016/j.renene.2023.01.051 

Viola, IM, Gao, Z, & Smith, J, 2022, ‘Use of streamnormal forces within an array of tidal power harvesters,' PLoS ONE 17(7): e0270578. https://doi.org/10.1371/journal.pone.0270578

Viola, IM, Pisetta, G, Dai, W, Arredondo-Galeana, A, Young A & Smyth, A, 2022, 'Morphing Blades: Theory and Proof of Principles,' International Marine Energy Journal (invited), vol. 5, no. 2, pp. 183-193. https://doi.org/10.36688/imej.5.183-193

Dai, W, Broglia, R & Viola, IM, ‘Mitigation of Rotor Thrust Fluctuations through Passive Pitch,’ Journal of Fluids and Structures, vol. 112, no. 103599, pp 23. https://doi.org/10.1016/j.jfluidstructs.2022.103599

Viola, IM, Nila, A, Davey & T, Gabl, R, 2022, ‘Underwater LED-based Lagrangian Particle Tracking Velocimetry’, Journal of Visualisation, pp. 12. https://doi.org/10.1007/s12650-022-00832-z

Pisetta, G, LeMestre, R & Viola, IM, 2022, ‘Morphing Blades for Tidal Turbines: a Theoretical Study’, Renewable Energy, vol. 183, pp. 802-819. https://doi.org/10.1016/j.renene.2021.10.085

Arredondo-Galeana, A, Kiprakis, A & Viola, IM, 2022 ‘A low cost oscillating membrane for underwater applications at low Reynolds numbers’, Journal of Marine Science and Engineering, vol. 10, no. 1, 77. https://doi.org/10.3390/jmse10010077

Scarlett, TG & Viola IM, 2020, ‘Unsteady hydrodynamics of tidal turbine blades’, Renewable Energy, vol. 146, pp. 843-855. https://doi.org/10.1016/j.renene.2019.06.153

Scarlett, GT, Sellar, B, van den Bremer, T & Viola, IM, 2019, Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions, Renewable Energy, vol. 143, pp. 199-213.https://doi.org/10.1016/j.renene.2019.04.123

Wang, E, Ramesh, K, Viola, IM & Killen S, 2018, ‘On the nonlinear dynamics of self-sustained limit-cycle oscillations in a flapping-foil energy harvester’, Journal of Fluids and Structures, vol 83, pp. 339-357. https://doi.org/10.1016/j.jfluidstructs.2018.09.005

Chen, B, Su, S, Viola, IM & Greated, CA, 2018, Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades, Ocean Engineering, vol 155, pp. 75–87. https://doi.org/10.1016/j.oceaneng.2018.02.038

Tagliaferri, F, Hayes, BP, Viola, IM & Djokic SZ, 2016, ‘Wind modelling with nested Markov chains’, Journal of Wind Engineering & Industrial Aerodynamics, vol 157, pp. 118-124. https://doi.org/10.1016/j.jweia.2016.08.009

 

Sail Aerodynamics

Souppez, JB & Viola, IM, 2023, ‘Water Tunnel Testing of Downwind Yacht Sails,’ Experiments in Fluids, vol. 65, no. 65, pp. 19. https://doi.org/10.1007/s00348-023-03752-2

Arredondo-Galeana, A, Babinsky, H & Viola, IM, 2023, ‘Vortex flows of downwind sails,’ Flow, vol. 3, no. E8. https://doi.org/10.1017/flo.2023.1 

Souppez, J-BRG, Arredondo-Galeana, A & Viola, IM, 2019. 'Recent advances in numerical and experimental downwind sail aerodynamics', Journal of Sailing Technology, vol. 4, no. 1, pp. 45-65. https://doi.org/10.5957/jst.2019.4.1.45

Arredondo-Galeana, A & Viola, IM, 2018, ‘The leading-edge vortex of yacht sails’, Ocean Engineering (invited)vol 159, pp. 552-562. https://doi.org/10.1016/j.oceaneng.2018.02.029

Viola, IM, Bartesaghi, S, Van Renterghem, T & Ponzini, 2014, ‘Detached eddy simulation of a sailing yacht', Ocean Engineering (invited), vol 90, pp 93-103. https://doi.org/10.1016/j.oceaneng.2014.07.019

Bot, P, Viola, IM, Flay, RGJ & Brett, JS, 2014, ‘Wind-tunnel pressure measurements on model-scale rigid downwind sails', Ocean Engineering (invited), vol 90, pp 84-92. https://doi.org/10.1016/j.oceaneng.2014.07.024

Biancolini, ME, Viola, IM & Riotte, M, 2014, 'Sails trim optimisation using CFD and RBF mesh morphing', Computers and Fluids, vol 93, pp. 46-60. https://doi.org/10.1016/j.compfluid.2014.01.007

Viola, IM, 2013, 'Recent advances in sailing yacht aerodynamics', Applied Mechanics Reviews, vol 65, no. 4, 040000, pp. 1-12. https://doi.org/10.1115/1.4024947

Viola, IM, Bot, P & Riotte, M, 2013, 'On the uncertainty of CFD in sail aerodynamics', International Journal for Numerical Methods in Fluids, vol 72, no. 11, pp. 1146-1164. https://doi.org/10.1002/fld.3780

Viola, IM, Bot, P & Riotte, M, 2013, 'Upwind sail aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements', International Journal of Heat and Fluid Flow, vol 39, pp. 90-101. https://doi.org/10.1016/j.ijheatfluidflow.2012.10.004

Viola, IM & Flay, RGJ, 2012, 'Sail aerodynamics: on-water pressure measurements on a downwind sail', Journal of Ship Research, vol 56, no. 4, pp. 197-206. https://doi.org/10.5957/JOSR.56.4.110003

Viola, IM & Flay, RGJ, 2011, 'Sail aerodynamics: understanding pressure distributions on upwind sails', Experimental Thermal and Fluid Science, vol 35, no. 8, pp. 1497-1504. https://doi.org/10.1016/j.expthermflusci.2011.06.009

Viola, IM, Pilate, JP & Flay, RGJ, 2011, 'Upwind sail aerodynamics: a pressure distribution database for the validation of numerical codes', Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, vol 153, no. 1, pp. 47-58. DOI:10.3940/rina.ijsct.2011.b1.111. Awarded RINA Medal of Distinction.

Viola, IM & Flay, RGJ, 2011, 'Sail pressures from full-scale, wind-tunnel and numerical investigations', Ocean Engineering, vol 38, no. 16, pp. 1733-1743. https://doi.org/10.1016/j.oceaneng.2011.08.001

Viola, IM & Flay, RGJ, 2010, 'Full-scale pressure measurements on a Sparkman and Stephens 24-foot sailing yacht', Journal of Wind Engineering and Industrial Aerodynamics, vol 98, no. 12, pp. 800-807. https://doi.org/10.1016/j.jweia.2010.07.004

Viola, IM & Flay, RGJ, 2010, 'Pressure distributions on modern asymmetric spinnakers', Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, vol 152, no. 1, pp. 41-48. DOI:10.3940/rina.ijsct.2010.b1.103

Viola, IM & Flay, RGJ, 2009, 'Force and pressure investigation of modern asymmetric spinnakers', Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, vol 151, no. 2, pp. 31-40. DOI:10.3940/rina.ijsct.2009.b2.98. Awarded RINA Medal of Exceptional Merit.

Viola, IM, 2009, 'Downwind sail aerodynamics: A CFD investigation with high grid resolution', Ocean Engineering, vol 36, no. 12-13, pp. 974-984. https://doi.org/10.1016/j.oceaneng.2009.05.011

 

Hull Hydrodynamics

Speranza, N, Kidd, B, Schultz, MP & Viola IM, 2019, ‘Modelling of Hull Roughness’, Ocean Engineering, vol 174, pp. 31-42. https://doi.org/10.1016/j.oceaneng.2019.01.033

Viola, IM, Enlander, J & Adamson, H, 2014, 'Trim effect on the resistance of sailing planing hulls' Ocean Engineering, vol 88, pp 187-193. https://doi.org/10.1016/j.oceaneng.2014.06.025

Viola, IM, Bartesaghi, S, Della Rosa, S & Cutolo, S, 2013, 'On the use of CFD for the design of yacht hulls', Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, vol 155, no. 2, pp. 81-93. Awarded RINA Medal of Distinction. DOI:10.3940/rina.ijsct.2013.b2.141

Viola, IM, Flay, RGJ & Ponzini, R, 2012, 'CFD analysis of the hydrodynamic performance of two candidate America's Cup AC33 hulls' Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, vol 154, no. 1, pp. 1-12. DOI:10.3940/rina.ijsct.2012.b1.113

 

Robotics

Marshall, R, Souppez, JB, Khan, M, Viola, IM, Nabae, H, Suzumori, K, Stokes, AA and Giorgio-Serchi, F, 2023, ‘Mechanical Characterisation of Woven Pneumatic Active Textile,’ IEEE Robotics and Automation Letters, vol. 8, no. 5, pp. 2804-2811. https://doi.org/10.1109/LRA.2023.3262177 

 

Yacht Racing Routing and Strategy

Tagliaferri, F & Viola, IM, 2017, ‘A real-time strategy-decision program for sailing yacht races’, Ocean Engineering, vol 134, pp. 129–139. https://doi.org/10.1016/j.oceaneng.2017.02.026

Tagliaferri, F, Viola, IM & Flay RGJ, 2015, ‘Wind direction forecasting with artificial neural networks and support vector machines’, Ocean Engineering, vol 97, no. 15, pp. 65–73. https://doi.org/10.1016/j.oceaneng.2014.12.026

Tagliaferri, F, Philpott, AB, Viola, IM & Flay, RGJ, 2014, ‘On risk attitude and optimal yacht racing tactics', Ocean Engineering - Special Issue: Innovation in High Performance Sailing Yachts - INNOVSAIL, vol 90, pp 149-154. https://doi.org/10.1016/j.oceaneng.2014.07.020

 

Windships

Viola, IM, Sacher, M, Xu, J & Wang, F, 2015, ‘A numerical method for the design of ships with wind-assisted propulsion’, Ocean Engineering, vol 105, pp. 33–42. https://doi.org/10.1016/j.oceaneng.2015.06.009